Climate reflections


List of contents


Open Climate4you homepage


20080214: Reflections on recent global surface air temperature changes

Recently there has been much attention drawn to the global temperature record since 1998 (IPCC 2007, Fourth Assessment Report of the Intergovernmental Panel on Climate Change). No less than five years since 1998 has been the warmest recorded since the latter part of the Little Ice Age (1850). The years listed by IPCC in their 2007 report as being especially warm are 1998, 2002, 2003, 2004 and 2005 (Trenberth et al. 2007, p.237). The El Niño effect on the year 1998 is mentioned by Trenbert et al. (2007), but the 1998 high global annual temperature remain listed among the top five annual temperatures. In the 2007 IPCC Summary for Policymakers the series of record high temperatures is highlighted, but unfortunately without calling attention to the special character of the year 1998. There is reason, therefore, to consider the whole temperature record since 1998 in some detail.

Estimates of the recent global temperature changes suggest that the planet may now have entered a period which deviates from the previous period since 1980, where increasing temperatures have prevailed. In contrast to this previous development, net changes since 1998 appear to be small. The year 1998 was especially warm due to the 1997-1998 El Niño in the Pacific Ocean, and was followed by a cooler period 1999-2000. From 2001 surface air temperatures remained essentially stable until 2007, where temperatures again began to decrease. Considering the whole 10-year period 1998-2007, however, net changes have been small. 

It is impossible to know if this lack of warming will continue, but these observations are inconsistent with the predictions of the long-term global climate predictions, such as reported in the 2007 IPCC report. Three possibilities remain for the future development of the average global surface air temperature:  

  • The planet have entered a period of more stable temperatures

  • The planet are just now passing a temperature peak and temperatures will begin to drop in the near future

  • Temperatures will begin to increase again 

None of the existing global climate models have forecasted the apparent discontinuation of rising air temperatures following the transition period 1998-2001. Climate models forecast increasing temperatures along with the ongoing increase of atmospheric CO2. For the next two decades a warming of about 0.2°C per decade is projected for a range of SRES emission scenarios according to the 2007 IPCC Summary for Policymakers (p.7 and Fig.SPM.5). It is therefore of considerable interest to monitor the future surface air temperature development, especially in the polar regions, where changes are expected to be more rapid than elsewhere.

The cooling interval of the atmosphere since early 2007 is interesting, but may represent a short interval of low temperatures, only. This cooling does not demonstrate that global warming has stopped for many years to come, and it would be premature to attempt drawing conclusions before more data are available. Surface air temperatures might well bounce back to the previous level during 2008. 

Presumably the La Niña event in the Pacific Ocean since August 2007 contributes to the present interval of cooling, affecting large surface areas near the Equator, just like another La Niña episode probably contributed to the 1999-2000 cool episode (click here to see diagrams). What appear noteworthy is the fact that several other ocean areas also are developing relatively low sea surface temperatures at the moment (February 2008). Generally speaking, only the North Atlantic remains relatively warm. Click here to see an updated map of the present global sea surface temperature anomaly.

Also other factors might be relevant to consider. As one example, it is interesting that the 1998 termination of global warming (since 1978) apparently is synchronous with a change in the global cloud cover: Satellite observations since 1983 show a decreasing trend from 1987 until 1999, from when the global cloud cover again has increased somewhat. As the global cloud cover have a clear net cooling effect on the global climate, the variations of the global cloud cover presumably is well worth to follow in the years to come. Click here to see a graph showing the variations of the global cloud cover since 1983.

Click here to jump back to list of contents.



20080306: Reflections on the significance of recent surface air temperature changes

In a normal scientific context the present period with essentially stable global air temperatures represents a classic example of what is known as empirical falsification, disproving the hypothesis on the dominant influence of CO2 and alleged associated effects on the global temperature. The atmospheric content of CO2 continues to increase, but the global surface air temperature is essentially stable, without large volcanic eruptions or other specific phenomena to explain the lack of increasing air temperature.

Clearly other factors not fully represented by global climate models must recently have had a net cooling effect of the same magnitude as the alleged warming effect of greenhouse gasses. Consequently, global climate models apparently are still not perfect, and may require modification and presumably also the inclusion of additional processes.

This observation does not disprove the general notion that atmospheric CO2 has influence on the global temperature. There are good reasons to expect that all other things being equal, an increasing amount of atmospheric CO2 may lead to higher global temperature.

What the falsification do demonstrate, however, is that the alleged dominance of CO2 apparently is wrong, and that CO2 with associated warming effects have a smaller relative importance than previously believed. The real relative importance of CO2 for the global temperature and other drivers will be demonstrated by the future global temperature development as well as by various future research initiatives. Once again, the attention is called to the change in global cloud cover and total atmospheric water vapour content, both changes being almost synchronous with the 1998 termination of the period of recent global warming since 1978.

In addition, the amount of atmospheric CO2, like most other phenomena in nature, is likely to undergo natural variations. For CO2 this has the additional implication, that the ocean temperature presumably represents an important control on the amount of atmospheric CO2.

Notwithstanding these considerations, the global average surface temperature since 1998 is still high and presumably higher than at any time since the end of the Little Ice Age (Trenberth et al. 2007). This observation, however, does not represent a valid argument for ignoring the significance of the recent temperature development. The CO2 hypothesis forecasts the global temperature to increase whenever the atmospheric CO2 concentration goes up, if not counteracted by any other known climatic phenomena, such as, e.g., volcanic eruptions. Whenever a situation like the present occurs, with increasing atmospheric CO2 and essentially stable (or decreasing) global temperatures over several years without known counter effect, the hypothesis is falsified. The general level of the global temperature, high or low, when seen in a longer time perspective does not matter in this context, as this may well be the result of variations in a number of other climatic drivers.

There has in the recent past been other periods where the global temperature stopped increasing, e.g. 1988-1989 and 1991-1993 (click here for diagram). These periods are, however, shorter than the present period, and some of these may be related directly to the cooling effects of volcanic eruptions (e.g., the 1991 Mt. Pinatubo eruption). On this background, the present period with essentially stable global temperatures over several years differs and is remarkable. It is useful to remember that the modern global warming concept refers to a 20-year period only, from 1978 to 1998, which is not a long period in a climatic context. The present period since 1998 without increasing temperatures is already half as long.

Click here to read a statistician's evaluation of the recent global temperature changes (since 1998) compared to the IPCC-temperature forecasts (located on the Public Policy Forecasting website).

In addition to the above considerations, the interested reader might also find it valuable to read a critique on the whole concept of calculating an average global temperature (Essex et al. 2006). In addition to this, surface air temperatures is a poor indicator of global climate heat changes, as air has relatively little mass associated with it. Ocean heat changes are the dominant factor for global heat changes. Apparently, climate models still have difficulties to model the dynamics of the oceans correctly.   

The fact remains, however, that the estimated global surface air temperature continues to attract widespread interest, and many agree that this number at least may be considered a useful proxy for the present state of the global climate system. Transferring information on global temperature changes to a regional scale, however, gives only very little useful information. Climate change is essentially a phenomenon which must be understood on a regional scale. Click here to see an illustration of this for Europe during the 20th century. 

Click here to jump back to list of contents.


20080715: Handling the present period without global warming by Groupthink

Global temperature has not risen since 1998. The models relied upon by the Intergovernmental Panel on Climate Change (IPCC) had not projected this recent absence of global warming, as well as a number of other phenomena, such as, e.g., cooling in Antarctica (Doran et al. 2002), the absence of ocean warming since 2003 (Lyman et al. 2006; Gouretski and Koltermann 2007), and that the Pacific Decadal Oscillation recently changed from its warming to its cooling phase.

The present period since 1998 with no global temperature increase thereby has caused some embarrassment for the notion that burning of fossil fuel causes a marked increase of global temperatures. The embarrassment is becoming more and more pronounced as the atmospheric concentration of CO2 continues to increase.

As increasing global temperature 1978-1998 was the main driver for concern about future climate, one would have expected this new temperature development to be broadly welcomed as a good development. Somewhat surprisingly, this has apparently not been the case. The lack of warming since 1998 has instead been ignored or defensively explained as being without significance. Some have simply chosen to refocus on other issues without direct relation to air temperature, such as, e.g., Arctic (not Antarctic) sea ice or retreating glaciers.

A widespread defensive reaction to the recent temperature development has been that of stressing the importance of natural multi-annual and decadal temperature variations to explain the lack of warming. Previously, this was not a widespread line of argumentation among people supportive of the notion of significant anthropogenic warming: In contrast, observed temperature increases were usually presented as indications of anthropogenic warming, and definitely not as the result of natural multi-annual and decadal temperature variations.

This way of asymmetrical reasoning is interesting from a psychological point of view, and is usually considered characteristic for groupthink.

Groupthink is a type of thought exhibited by members of a group, trying to minimize conflict and reach consensus without critically testing, analyzing, and evaluating ideas (text from Wikepedia). During groupthink, members of the group avoid promoting viewpoints outside the comfort zone of consensus thinking. A variety of motives for this may exist such as a desire to avoid being seen as foolish, or a desire to avoid embarrassing or angering other members of the group. Groupthink may cause groups to make hasty, irrational decisions, where individual doubts are set aside, for fear of upsetting the group’s balance.

The contrast between the deliberations over two consecutive crises involving Cuba and the U.S. in 1961 and 1962, respectively, may serve as historical examples to illustrate the potential dangers and negative effects of groupthink:

In early 1961 President John F. Kennedy and his advisors fell into the trap of poor group decision-making practices that lead to their disastrous decision to launch the Bay of Pigs invasion (17 April 1961), which failed ignominiously, leading to the much more dangerous Cuban Missile Crisis in October 1962.

As pointed out by Janis (1983) in his book Groupthink, the Bay of Pigs deliberations exhibited numerous characteristics that lead to bad decisions, such as a premature sense of apparent unanimity, suppression of personal doubts and of expression of contrary views. In addition, the group leader (Kennedy) guided the discussion in such a way as to minimize disagreement.

The subsequent October 1962 Cuban Missile Crisis deliberations, again involving Kennedy and many of the same advisors, avoided those groupthink characteristics and instead proceeded along lines associated with productive decision-making, such as Kennedy ordering participants to think skeptically, inviting outside experts to share their viewpoints, allowing discussion to be freewheeling, having subgroups meet separately, and occasionally leaving the Cabinet Room to avoid his overly influencing the discussion himself (Diamond 2005). Ultimately, the 1962 Cuban missile crisis was resolved peacefully, thanks in part to these prudent measures, and thanks in part to the courage, realism and political competance shown by both President John F. Kennedy and Soviet Premier Nikita Khrushchev .

But why did decision-making in these two Cuban crises unfold so differently? Much of the reason is probably that Kennedy himself thought hard after the 1961 Bay of Pigs fiasco, and he charged his advisors to think equally hard, about what had gone wrong with their decision-making in 1961. Based on that thinking, he purposely changed how he operated the advisory discussions in 1962, thereby avoiding the negative effects of groupthink.

The 2008 defensive reaction to the recent lack of global warming can be considered as another fine example of groupthink. A premature sense of apparent unanimity prevails (most scientists agree that global warming is real and manmade), and any doubts and contrary views are suppressed (by official institutions launching lists of ‘correct’ answers to a number of critical questions (so-called myths), including the lack of warming since 1998).

Irving Janis (1977) devised eight symptoms that are indicative of groupthink (cited from Wikepedia):

  • Illusions of invulnerability creating excessive optimism and encouraging risk taking. 

  • Rationalising warnings that might challenge the group's assumptions.

  • Unquestioned belief in the morality of the group, causing members to ignore the consequences of their actions. 

  • Stereotyping those who are opposed to the group as weak, evil, disfigured, impotent, or stupid. 

  • Direct pressure to conform placed on any member who questions the group, couched in terms of "disloyalty".

  • Self censorship of ideas that deviate from the apparent group consensus.

  • Illusions of unanimity among group members, silence is viewed as agreement.

  • Mindguards — self-appointed members who shield the group from dissenting information.

Click here to jump back to list of contents.




20080911: Is the global temperature increase 1981-2005 unique compared to the general temperature rise since the end of the Little Ice Age ?

In the latest IPCC report (IPCC 2007, Fourth Assessment Report of the Intergovernmental Panel on Climate Change) Figure 1 on page 253 in Chapter 3 (Observations: Surface and Atmospheric Climate Change) indicate that a new and accelerating global temperature rise have taken place during the 25 years 1981-2005. The topmost part of this figure is reproduced below:


Figure A. Figure text reproduced from IPCC 2007, chapter 3, page 253: Annual global mean observed temperatures (black dots) along with simple fits to the data. The left hand axis shows anomalies relative to the 1961 to 1990 average and the right hand axis shows the estimated actual temperature (°C). Linear trend fits to the last 25 (yellow), 50 (orange), 100 (purple) and 150 years (red) are shown, and correspond to 1981 to 2005, 1956 to 2005, 1906 to 2005, and 1856 to 2005, respectively. Note that for shorter recent periods, the slope is greater, indicating accelerated warming. The blue curve is a smoothed depiction to capture the decadal variations. To give an idea of whether the fluctuations are meaningful, decadal 5% to 95% (light grey) error ranges about that line are given (accordingly, annual values do exceed those limits). Results from climate models driven by estimated radiative forcings for the 20th century (Chapter 9) suggest that there was little change prior to about 1915, and that a substantial fraction of the early 20th-century change was contributed by naturally occurring influences including solar radiation changes, volcanism and natural variability. From about 1940 to 1970 the increasing industrialisation following World War II increased pollution in the Northern Hemisphere, contributing to cooling, and increases in carbon dioxide and other greenhouse gases dominate the observed warming after the mid-1970s.


From the text above the period 1981-2005 is identified by IPCC as being unique, representing a new trend characterised by an accelerated temperature rise. The accelerated temperature increase is suggested to be caused by atmospheric increases in carbon dioxide and other greenhouse gases, assumed to dominate the observed warming after the mid-1970s. 

This is clearly an important conclusion, and the analysis leading up to the conclusion therefore deserves to be considered in some detail. 

In the figure above, error bars and linear fits tend to hide the original data (the black dots). This is in itself most unfortunate, as the diagrams in the IPCC report should be prepared for consumption by policy makers and other intelligent lay persons. Therefore, they should be easy to understand, being faithful to both the data and the science, designed to shed light rather than to mislead. 

In this respect, the procedure of comparing linear fits calculated for time windows of different lengths (diagram above) is highly unusual, if not plain wrong. In most cases, for obvious mathematical reasons, a linear fit calculated for a long temperature series will yield a smaller slope than a linear fit calculated for a shorter period. Comparing fits covering time windows of different length is therefore, in general, meaningless and should be avoided. The unusual and unfortunate procedure adopted by IPCC 2007 therefore calls for a new analysis of the post Little Ice Age temperature increase.

In the figure above HadCRUT3 global surface temperature estimates have been used. In the figure below, the original monthly HadCRUT3 data are plotted in a new diagram:


Figure B. Monthly global surface air temperature since 1850, according to HadCRUT3. The blocks in the bottom part of the diagram indicate the following interpretation od the data: The early data shown the last part of the Little Ice Age, and the younger data show the temperature rise since the termination of the Little Ice Age in the early 20th century. The data series is updated to August 2008.


The diagram above (Figure B) shows how the HadCRUT3 series may be interpreted to show 1) the final part of the Little Ice Age, and 2) the following period of warming, including the alleged unique warming period 1981-2005. The actual termination of the Little Ice Age differs somewhat from region to region, but in Figure B, for practical reasons, the year 1908 has been chosen as the first year in the post Little Ice Age warming period.

In the following diagram (Figure C), only the data points representing the post Little Ice Age period from 1908 are considered.

Figure C. Monthly global surface air temperature since 1908, according to HadCRUT3. The blue line show the variation of the monthly values, and the green line show a linear trend line calculated for the whole period 1908-2008. The data series is updated to August 2008.


In the diagram above a post Little Ice Age linear trend line has been calculated (green line). This trend line has a slope of 0.75oC per 100 year, suggesting that the overall global temperature increase since the termination of the Little Ice Age (here defined as 1908) has been about 0.75oC.

It is now possible to compare the rate of temperature increase from 1981 to 2005 with the general temperature rise since the termination of the Little Ice Age, to investigate if this period of rapid temperature increase is unique in relation to the remaining part of the data series since 1908. 

This can be done by plotting the deviation of the individual data points from the overall trend line, as is shown in Figure D below.


Figure D. Monthly global surface air temperature since 1908, according to HadCRUT3. The zero line indicate values defining the green overall trend line in the previous figure. The blue graph show the difference between the monthly temperature data and the green trend line in the previous diagram. The data series is updated to August 2008.


The zero line in Figure D represents values (year, temperature) which would plot exactly on the green line showing the overall global temperature increase since the termination of the Little Ice Age. From this figure it is not possible to identify the period 1981-2005 as a period characterised by a unique rapid temperature increase. The rate of temperature increase during the time leading up to the warm period around 1940 obviously was of similar magnitude.


Figure E. Monthly global surface air temperature since 1908, according to HadCRUT3. This diagram is identical to that above, except for the addition of a green graph representing the 61-month moving average (c. 5 year). The data series is updated to August 2008.


In the diagram above (Figure E), the temperature development during the post Little Ice Age temperature increase (Figure B) is attempted clarified by adding a graph showing the 61-month moving average. Once again, it is not possible to identify the period 1981-2005 as being characterised by a unique rate of temperature change. If anything, the diagram instead suggests the possible existence of a cyclic development superimposed on the general post Little Ice Age temperature increase, with the late 20th century temperature increase apparently coming to an end during the first decade of the 21st century. However, the data series is to short to conclude anything on this at the moment.

Another, and perhaps simpler, way of illustrating the lack of a special signature associated with the period 1981-2005 is to plot the monthly temperature change as a function of time, using the raw data shown in Figure C:


Figure F. Diagram showing the monthly change of the global surface air temperature since 1908, according to HadCRUT3. This diagram is prepared by simply calculating the temperature difference between successive months (no detrending), as shown in Figure C. The yellow line represents the 61-month moving average (c. 5 year). The data series is updated to August 2008.


In the diagram above (Figure F) the monthly global temperature change is shown as a blue graph, while the yellow line represents the running 61-month average. Should the period 1981-2005 stand out from the previous part of the post Little Ice Age warming by being characterised by accelerated temperature increase, a development towards more and more positive values should show up in the diagram. However, this does not seem to be the case. Instead, also from this point of view the 1981-2005 period apparently fits nicely into the previous part of the post Little Ice Age warming. 

Summing up: The unfortunate procedure of comparing linear fits calculated for time windows of different lengths lead IPCC 2007 to the unwarranted conclusion that the temperature rise 1981-2005 was unique (Figure A). In reality, this is not the case. The temperature increase leading up to the warm peak around 1940 is entirely comparable to that characterising the period 1981-2005 (Figure E). Also when the monthly temperature change is considered, the 1981-2005 does not stand out (Figure F). Consequently the latter part of the post Little Ice Age warming do not differ from the early part of the warming period. The whole warming period since 1908 may therefore bee seen as representing one single development, not showing a new trend corresponding to the rising atmospheric levels of carbon dioxide and other greenhouse gases after the mid-1970s. Thus, the simplest interpretation of the global temperature increase since 1908 is that it represents mainly a natural recovery from low Little Ice Age temperatures, without clear anthropogenic impact.

This is not the first time this simple interpretation of the post Little Ice Age warming has been suggested. The interested reader should definitely visit the homepage of Dr. Syun-Ichi Akasofu. In the present context, especially his paper Is the Earth still recovering from the "Little Ice Age"? A possible cause of global warming is of high relevance.

Click here to jump back to list of contents.



20080927: Reflections on the correlation between global temperature and atmospheric CO2

Superimposed plot of five different global monthly temperature estimates shown elsewhere. As the base period differs for the different temperature estimates, they have been normalised by comparing to the average of the initial 60 months (5 years) from January 1979 to December 1983. Click here to go to the associated comparison of these five temperature records. The heavy black line represents the simple running 37 month (c. 3 year) mean of the average of all five temperature records. The graph showing the amount of atmospheric CO2 is based on data from the Mauna Loa station, Hawaii, see also above. For the first two decades in the 21th century a warming of about 0.2°C per decade is projected for a range of SRES emission scenarios according to the 2007 IPCC Summary for Policymakers (p.7 and Fig.SPM.5). For comparison, the rate of this projected temperature increase is shown by the grey stippled line. Last month shown: August 2013. Last diagram update: 2 October 2013.


In the diagram above five different well-known global monthly temperature estimates are shown since January 1979, together with the monthly atmospheric CO2 concentration, according to the Mauna Loa measurement station, Hawaii. The estimated annual CO2 growth rates for Mauna Loa are close, but not identical, to the global growth rates. The standard deviation of the differences is 0.26 ppm/yr, too little to be of any importance in the present context. 

The year 1979 roughly marks the beginning of the late 20th century period of global warming, after termination of the previous period of global cooling (from 1940). According to the 2007 IPCC report the time window shown is a period characterised by an accelerating global temperature rise, due to increases in atmospheric carbon dioxide and other greenhouse gases. Finally, the year 1979 also represents the beginning of the satellite temperature measurements.

In the diagram above the scales for temperature and CO2 have been chosen to generate an identical overall visual slope of both CO2 and temperature, and the global temperature is seen to increase slowly in concert with the increase of atmospheric CO2. At the same time, however, it is clear that there are a number of 2-5 year long temperature variations superimposed on the general increase. Some of these variations can be explained by oceanographic variations ( e.g. 1998) or volcanic activity (e.g. 1992).

Towards the end of the data series, in the early 21st century, it appears that a new temperature development has begun, deviating from what might be expected from the general CO2 increase. The question remains if this is just another short-lived deviation, and that the global temperature will soon resume its previous increase, or is this the onset of a more significant change in the global temperature development, and consequently, in the relation between global temperature and atmospheric CO2 content ?